
Turk J Elec Eng & Comp Sci

(2013) 21: 945 – 956

c© TÜBİTAK

doi:10.3906/elk-1102-1051

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

A blind digital signature scheme using elliptic curve digital signature algorithm

İsmail BÜTÜN1, Mehmet DEMİRER2,∗
1Department of Electrical Engineering, Faculty of Engineering, University of South Florida,

Tampa, Florida, USA
2Department of Electrical Engineering, Faculty of Engineering, Hacettepe University, Ankara, Turkey

Received: 18.02.2011 • Accepted: 27.11.2011 • Published Online: 03.06.2013 • Printed: 24.06.2013

Abstract: In this study, we propose a blind digital signature (BDS) scheme based on the elliptic curve digital signature

algorithm that increases the performance significantly. The security of our scheme is based on the difficulty of the elliptic

curve discrete algorithm problem. Therefore, it offers much smaller key lengths for the desired security levels, along with

much faster cryptographic processes, leading to fewer hardware and software requirements. According to our simulation

results, the relative performance improvement of our proposed BDS scheme is up to 96% when compared with previously

proposed schemes.

Key words: Blind digital signature, elliptic curve digital signature algorithm, elliptic curve discrete logarithm problem,

digital privacy

1. Introduction and related work

Nowadays people can accomplish their daily tasks, such as banking transactions, without leaving their homes
by using the Internet. People also carry out their shopping needs through the Internet, which has increased
the growing rate of e-commerce. Now the challenge is to improve the security and anonymity of people in
this uncontrollable and dangerous Internet environment. As a solution, we use the concept of the blind digital
signature (BDS) presented in [1]. Since 1983, several applications of BDS have been developed through the
e-commerce and e-voting fields.

The verification of data using any methods of information technology is called “electronic signature”.
“Digital signature” is a special kind of electronic signature, which uses public key cryptography (PKC) al-
gorithms to provide data integrity and authenticity. The function of a digital signature is to prevent forged
signatures that cannot be distinguished from the original ones and to prevent the modification of the original
documents. The aim of a digital signature is to form an electronic basis for the replacement of handwritten
signatures. Today, digital signatures are used for identifying the owners of electronic data. The existence of
reliable digital signatures that are being used to secure online transactions, such as web-based financial trans-
actions, motivates individuals and corporations to use digital signatures on a widespread basis. Sufficiently
reliable digital signature schemes expedite the process of maintaining the obligation of the digital signatures in
justice.

Privacy is one of the basic rights for individuals and institutions that need to preserve their confidentiality.
BDS is presented as a special application of digital signatures with a distinct property of blindness (unlinkability),

∗Correspondence: mehmet@ee.hacettepe.edu.tr

945

BÜTÜN and DEMİRER/Turk J Elec Eng & Comp Sci

and it can be used in many applications of cryptography where user privacy is important, such as digital voting
systems, digital payment systems, online transactions, or electronic government services [1–6].

Digital signature is used for identifying the owners of electronic data, and it thereby assures the trace-
ability of electronic transactions. On the other hand, BDS disguises the content of a message from its signer
and thereby assures the privacy of the users. Chaum [1] pioneered the concept of BDS, and he later applied

this method to establish customer privacy in electronic payment systems [7]. He attained this by altering the

traditional digital signature algorithm (DSA) in an intelligent way.

The BDS scheme involves 2 parties, namely a “signer” and a signature “requester”. The scheme allows
the requester to have the message signed by the signer without revealing any information about the message.
With a secure BDS scheme, the signer is unable to trace the signed message to the previous signing process,
where the requester cannot be traced while using the signed message. For example, a bank can sign an electronic
coin without seeing its serial number and later cannot distinguish this particular electronic coin from others.
Since the customer’s transactions cannot be traced, the privacy of the customer is ensured.

BDS is used to provide user anonymity and the unlinkability of electronic transactions, which prevents
the signer from linking a blinded message he signed to the unblinded version that he may be asked to verify. The
signed blinded message is unblinded prior to verification in such a way that the signature remains valid for the
unblinded version of the message. This is a very important feature to ensure user privacy. Hence, BDS schemes
can guarantee the anonymity of the customers in secure electronic payment systems [7,8] and the privacy of the

voters in secure electronic voting systems [9–11].

Elliptic curve cryptography (ECC) is one of the latest methods of PKC, which is becoming more attractive
for researchers. This is because it not only increases the security, but also decreases the resource requirements
at the same time. ECC offers the same security level with a shorter key length [12]. It is clear that no one
can regret such a property in security systems nowadays, where increasing the security level is a requirement.
This is an appealing development, especially for security applications used in resource-limited devices (where

“resources” are the processor speed, memory size, and power supplies [i.e. batteries] of said devices), such as
smart cards, cell phones, and other similar palm devices. Therefore, the applications that use ECC on such
devices will require fewer processor loops, less memory size, smaller key lengths, and less power consumption
when compared with the applications using other PKC algorithms such as the Rivest–Shamir–Adleman (RSA)

algorithm [13] or the DSA [14].

With growing potential in e-commerce, ECC systems will be considered to be an important alternative
solution to ensure security. Since they increase the security level per bit compared to the other traditional PKC
algorithms, the required hardware capacity also decreases. This is a property of prime importance in systems
where the computing resources are limited. Thus, together with ECC systems, we can generate not only high
speed hardware implementations, but also robust systems against any known attacks towards PKC systems.

Elliptic curve DSA (ECDSA) [15] helps us in the application of this cryptography approach (ECC) to

digital signatures. It was developed to match the properties of today’s standardized DSA [14]. In this paper,
in order to generate effective and satisfactory BDSs, we present an efficient method of ECDSA. This work is
based on our previous research published in [16].

In this study, we propose a BDS scheme that offers an increased performance in terms of processing time
compared to its counterparts. The relative performance improvement of our scheme is up to 96% compared to
that in [1] and up to 66% compared to that in [17]. In our proposed scheme, we achieve this by employing ECC

(i.e. ECDSA), which is superior to the other cryptography algorithms, such as RSA or DSA.

946

BÜTÜN and DEMİRER/Turk J Elec Eng & Comp Sci

The rest of the paper is organized as follows: Section 2 provides a brief introduction to the concept
of BDS. Section 3 presents our proposed BDS scheme. Section 4 includes the analysis and simulation results
to provide a comparison of our proposed scheme to the schemes presented in [1] and [17]. Finally, Section 5
concludes the paper and outlines the future work.

2. Brief introduction to BDS

BDS is a method of signing in such a way that the signer does not see the content of the document. Moreover,
if the signer sees the document/sign pair, he cannot determine for whom or when the document has been signed

(although it is possible to verify the validity of the signature). This is equivalent to signing a document blindly.
We can verify the signature if we see the document and signature, but it is clear that we would need to remember
when or for whom we have signed the document. Initially, this concept may be seen as rather strange – why do
we need to sign a document without reading it? It has been shown that this concept can efficiently be applied
to systems where user privacy is of primary significance. Online voting and electronic payment are very good
examples of these systems: when we vote online, we would like to keep secret for whom we voted, just the same
as in the case of voting with ballots. When shopping with cash money, a customer does not show an ID to a
vendor (in most of the cases, assuming age restrictions are fulfilled). Moreover, the vendor does not recognize
the customer, but can tell whether the customer’s money is forged or not. In the same manner, through an
online transaction, we do not want anybody to learn when or what we have paid for, but a vendor would be
able to verify the legitimacy of our payment.

The first BDS scheme that appears in the cryptography literature is based on the factoring algorithm
problem proposed by Chaum [1]. According to Chaum’s BDS scheme, there are 5 phases of initialization,
blinding, signing, unblinding, and verifying, and a BDS scheme must satisfy the following properties:

• Correctness: The correctness of the signature of a message signed through the proposed BDS scheme
can be checked by anyone using the signer’s public key.

• Blindness: The content of the message should be blind to the signer.

• Unforgeability: The signature is the proof of the signer, and no one else can derive any forged signature
and pass it through the verification.

• Unlinkability: The signer of the BDS is unable to link the message/signature pair, even when the
signature has been revealed to the public.

In [1], a BDS transaction has 2 parties, namely the requester and signer. When a requester requires a
BDS of the signer in response to a message, the system blinds the message by multiplying with a blinding factor.
Next, the requester sends the blinded message to the signer. The signer signs the blind message using his own
private key, and then sends the resultant BDS to the requester. Afterwards, the requester unblinds (extracts)
the signer’s digital signature from the message by deducting the blinding factor. At the end of the transaction,
the requester obtains the signer’s signature in the original message without revealing the original message to
the signer. The signer’s public key can be used for authentication purposes (to authenticate the signature when

needed).

947

BÜTÜN and DEMİRER/Turk J Elec Eng & Comp Sci

3. Proposed BDS scheme

In [17], the proposed BDS scheme was derived from a variation of the DSA. Our BDS scheme, meanwhile, is
derived from a variation of the ECDSA, and again it has 5 phases:

• Initialization,

• Blinding,

• Signing,

• Unblinding,

• Verifying.

In our proposed scheme, we used the elliptic curves over the Fp prime field, which has been suggested by

the National Institute of Science and Technology (NIST) and is called Federal Information Processing Standard

186-2 [18,19].

According to the Standards for Efficient Cryptography Group [20], elliptic curve domain parameters over
Fp are defined as a sextuple:

T = (p, FpabGnh), (1)

where p is an integer specifying theFp finite field and ab ∈ Fp are integers specifying the elliptic curve E(Fp)

defined by Eq. (2):

E (Fp) : y2 ≡ x3 + ax + b (mod p), (2)

where G = (xGyG)is a base point onE(Fp), n is a prime number defining the order of G , and h is an integer

defining the cofactor: h = # E(Fp)
n .

3.1. Initialization and key pair generation for ECDSA

The signer defines the elliptic curve domain parameters T , defined as in Eq. (1). Next, for each request, an

integer k is randomly selected by the user and the elliptic curve point Ŕ is calculated accordingly (refer to

Table 1 for all abbreviations used in this section):

Ŕ = kG = (x́1,ý1), (3)

ŕ = x́1 (mod n). (4)

In addition, the signer checks whether Eq. (5) holds.

ŕ �= 0 (5)

If the result is true, the signer sends the elliptic curve point Ŕ to the requester. If the result is false, then the
signer selects another k randomly and repeats Eqs. (3) and (4) until he finds an ŕ fulfilling Eq. (5).

948

BÜTÜN and DEMİRER/Turk J Elec Eng & Comp Sci

Table 1. Interpretation of abbreviations used throughout Section 3.

Abbreviation Interpretation
T Elliptic curve domain parameters
p Order of the finite field Fp, integer
Fp Finite field
a, b Coefficients defining the elliptic curve
G Generator point
n Order of G, a prime number
h Cofactor, integer

ECC Elliptic curve cryptography
ECDSA Elliptic curve digital signature algorithm

H(:) Hash value
d Private key of the signer
Q Public key of the signer, a point on the elliptic curve
m Message
ḿ Blinded message
s Signature
ś Blind signature
r x coordinate of R

ŕ x coordinate of Ŕ

R, Ŕ Points on the elliptic curve
A, B, k Random integer numbers
(xy) Coordinates for the Cartesian system

To generate the private and public key of the signer, the following steps are followed:

1. Integer d is chosen randomly in the range (1, n-1).

2. The elliptic curve point of Q is calculated as in Eq. (6):

Q = dG = (xQ, yQ) . (6)

With these calculations, the public key of the signer is assigned as point Q and the private key of the signer is
assigned as integer d .

3.2. Blinding phase

In order to blind the message m , the owner of message m needs the elliptic curve domain parameters T of the
signer; refer to Eq. (1). Blinding is achieved through the following steps, which are shown in Figure 1:

1. Signer sends the elliptic point Ŕ (refer to Eq. (3)) to the requester, which will be used as the blinding
coefficient.

2. Requester calculates ŕ from the elliptic point Ŕ , as shown in Eq. (4).

3. Requester randomly chooses integers A and B , which are in the range of (1, n-1).

4. Requester calculates the elliptic point R :

R = AŔ + BG = (x1y1). (7)

949

BÜTÜN and DEMİRER/Turk J Elec Eng & Comp Sci

5. Requester calculates r from the elliptic point R , which was given in Eq. (7):

r = x1 (mod n). (8)

6. Requester generates the blinded message ḿ and sends it back to the signer for the signing operation:

ḿ = AH (m) ŕ r−1 (mod n), (9)

where H is the “Hash” function, and in our scheme, we use the SHA-1 [21] algorithm as the hash function.

3.3. Signing phase

After the signer receives the blinded message ḿ from the requester, he generates the blind signature ś by
following these steps, which are also shown in Figure 1:

1. Signer calculates ŕ from the elliptic point Ŕ , as shown in Eq. (4).

2. The private key of the signer, d , was generated in the initialization phase.

3. k is a random integer that was generated in the initialization phase.

4. ś is calculated as shown in Eq. (10):

ś = dŕ + kḿ (mod n). (10)

m'=AH(m)r’r -1

Signer’s
secret key : d

s' = (dr’ + km’) mod n

Signer

Plain Text

Reques ter

m Find 2 random
integers less than n

Hash Function

H (m)
$[&^ .2-p6\#

R =AR’+BG=(x1,y1)
r=x1 modn
r'=x1' modn

A,B < n

Blinded Message : m’

Signer sends the
elliptic point :
R’= (x1',y1')

s' : digital signature of
the blinded message m’

% +!q0(7v+

H

Figure 1. “Blinding” and “Signing” phases of the proposed BDS scheme.

950

BÜTÜN and DEMİRER/Turk J Elec Eng & Comp Sci

3.4. Unblinding phase

When the requester receives the blind digital signature ś from the signer, the unblinding operation is needed
to obtain the digital signature (s , R) on message m, as shown in Figure 2.

1. Requester calculates ŕ from the elliptic point Ŕ , as shown in Eq. (4).

2. Requester verifies whether ŕ and ś are in the range of (1, n-1). If so, the requester generates the digital

signature (s , R) of the signer on message m , as shown in Eq. (11):

s = ś r ŕ−1 + BH (m) (mod n). (11)

S’ : digital signature of the
blinded message m’

%+!+%/&%

Signer sends the elliptic
points : R’ = (x1', y1') and G Public key of the signer: Q

S= (s’r(r’)̂ -1 + BH(m)) mod n

The digital signature (s,R) on
m, obtained from blind digital

signature (s’) of the signer
#$g9%&+/!

Elliptic curve domain
parameter : G

Plain Text

Hash Function R = x1 mod n

=$#&%+/!’ (rQ + H(m)R) mod n (s G) modn

=$#&%+/!’ =$#&%+/!’

Are equal ?

R r Q

G

s

Yes no

H (m)

H

m

Verifier

Requester

Signer

Figure 2. “Unblinding” and “Verifying” phases of the proposed BDS scheme.

951

BÜTÜN and DEMİRER/Turk J Elec Eng & Comp Sci

3.5. Verifying phase

Any party that has the elliptic domain parameters T of the signer (refer to Eq. (1)) can verify the digital

signature of (s , R) on message m by following these steps, which are also shown in Figure 2:

u1 = sG (mod n). (12)

u2 is calculated using the public key of the signer, Q :

u2 = rQ + H (m)R (mod n). (13)

If the statement of u1 = u2 is met, then the signature is verified as valid; otherwise, it is considered invalid.

3.6. Correctness proof of the proposed scheme

We begin by expanding u2 , defined in Eq. (13), by substituting Q with dG according to Eq. (6):

u2 = rdG + H (m) R (mod n). (14)

Since from Eq. (7) we know that R = AŔ + BG , then we can expand Eq. (14) as follows:

u2 = rdG + H (m)AŔ + H (m) BG (mod n) . (15)

Using Eq. (3), we substitute Ŕ with kG and we get:

u2 = rdG + H (m) AkG + H (m) BG (mod n) . (16)

Now, by expanding u1 , defined in Eq. (12), we need to achieve the same expression shown in Eq. (16). Since

from Eq. (11) we know that s = ś r ŕ−1 + BH (m) (mod n), then Eq. (12) becomes:

u1 = ś r ŕ−1G + BH (m) G (mod n). (17)

By substituting ś with dŕ + kḿ (mod n) from Eq. (10), Eq. (17) results in:

u1 = dŕ r ŕ−1G + kḿ r ŕ−1G + BH (m)G (mod n). (18)

By rearranging Eq. (18) we get:

u1 = rdGŕŕ−1 + kḿ r ŕ−1G + H (m) BG (mod n). (19)

From Eq. (9), substituting ḿ with AH (m) ŕ r−1 (mod n) in Eq. (19) results in:

u1 = rdGŕŕ−1 + k AH (m) ŕ r−1r ŕ−1G + H (m)BG (mod n). (20)

From modular arithmetic, we know that ŕŕ−1 = 1 (mod n) and rr−1 = 1 (mod n). By substituting these into

Eq. (20) we get:

u1 = rdG + k AH (m)G + H (m)BG (mod n). (21)

Eq. (21) is the same expression shown in Eq. (16). Therefore, we have proven that u1 = u2 by showing that

Eqs. (16) and (21) are equal to the same expression.

952

BÜTÜN and DEMİRER/Turk J Elec Eng & Comp Sci

4. Simulation results and discussions

In the applications, the key length of the algorithm is determined according to the desired security level. Today,
it is most practical to use a key length of between 160 and 192 bits for ECC systems. In the case of RSA, the
key length is 1024 bits for commercial applications and 2048 bits for more critical applications (where more

security is needed). These key lengths correspond to the 192-bit and 224-bit ECC key lengths, respectively [22].

While the security of Chaum’s BDS scheme [1] is based on the difficulty of the factorization problem [23],

the security of Camenisch et al.’s BDS scheme [17] is based on the difficulty of the discrete logarithm problem

[24]. On the other hand, the security of our BDS scheme relies on the elliptic curve discrete logarithm problem,

which is considered to be much more difficult than either of the other problems [12].

In our work, to provide comparisons for the reader, the implementation and simulation of both the BDS
schemes of [1] and [17] have been accomplished. A 1024-bit RSA key length is chosen for the implementation

of [1] and a 1024-bit DSA key length is chosen for the implementation of [17]. To provide further comparison

for the reader, we have issued our scheme with a variety of NIST-suggested elliptic curves (NIST192, NIST224,

NIST256, NIST384, and NIST521). This means that the key length of our scheme changes depending on the

curve (192 bits, 224 bits, 256 bits, 384 bits, and 521 bits, respectively). For example, if the NIST192 elliptic
curve is chosen for our scheme, then the key length is apparently 192 bits.

The test-bed system consists of a 1733-MHz processor with 512 MB of DDR-2 533-MHz RAM. Imple-
mentation is based upon the C programming language. For elliptic curve arithmetic operations, Miracle Library
is used [25].

In order to compare the time consumptions of the algorithms, the clock command of the C programming
language has been used. It gives the time that is spent on the processor between 2 events. For the same plain
text message (m consists of 431 bytes), the time (in seconds) spent on the processor for the relevant algorithms
is given in Figure 3.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
(s

)

Chaum
Chamenish
NIST192
NIST224
NIST256
NIST384
NIST521

Blinding phase Signing phase Unblinding phase Verifying phase

Figure 3. Comparisons of processing time for various BDS schemes classified according to phases.

Figure 3 is sorted according to the phases (blinding, signing, unblinding, and verifying) of the BDS

schemes, while Figure 4 is sorted according to the types of the BDS schemes (Chaum’s [1], Camenisch et al.’s

[17], and our scheme with the following elliptic curves: NIST192, NIST224, NIST256, NIST384, and NIST521).

953

BÜTÜN and DEMİRER/Turk J Elec Eng & Comp Sci

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
im

e
(s

)

Blinding
Signing
Unblinding
Verifying

Chaum Camenisch NIST192 NIST224 NIST256 NIST384 NIST521

Figure 4. Comparisons of processing times for various BDS schemes classified according to schemes .

Table 2 gives the processing time (s) of our scheme compared to other schemes, when the NIST192 elliptic

curve is used for our scheme. Table 3 gives the performance improvement (%) of our scheme compared to other
schemes, when the NIST192 elliptic curve is used for our scheme. In this case, it is clear that in terms of the
processing time, our scheme outperforms Chaum’s scheme [1] by about 96% and Camenisch et al.’s scheme [17]

by about 66%.

Table 2. Processing time (s) of BDS schemes.

Our scheme Chaum’s scheme Camenisch et al.’s scheme
Blinding phase 0.0624 0.5267 0.0892
Signing phase 0.0218 0.5156 0.0641

Unblinding phase 0.0374 0.0984 0.0732
Verifying phase 0.0470 0.4971 0.0499

Table 3. Relative performance improvement (%) of our scheme compared to other schemes.

Chaum’s scheme Camenisch et al.’s scheme
Blinding phase 88.15 30.04
Signing phase 95.77 65.99

Unblinding phase 61.99 48.90
Verifying phase 90.55 5.81

For all of the phases (blinding, signing, unblinding, and verifying), the fastest scheme is the one proposed

in this study, which uses the NIST192 elliptic curve (in other words, the scheme that has a key length of 192 bits),

and the slowest of all is Chaum’s [1] scheme, which uses a 1024-bit RSA key length. It is important to mention
that the key lengths for the considered schemes are selected to provide equal security levels. For example, it
has been proven that the security levels of the 1024-bit key length RSA algorithm, 1024-bit key length DSA
algorithm, and 160-bit key length ECC algorithm are the same [26,27]. The computational effort needed to

factor a 1024-bit size integer using the general number field sieve method is 3 × 1011 million instructions per
second years, whereas the same effort is needed to compute elliptic curve logarithms of the 160-bit size elliptic

954

BÜTÜN and DEMİRER/Turk J Elec Eng & Comp Sci

point with the Pollard ρ-method [12]. In [12], it is suggested that a 192-bit size NIST elliptic curve is comparable
to 1024-bit size RSA and DSA key lengths in terms of the intended cryptanalysis strength. Hence, we issued a
192-bit key length ECC algorithm, and, in this case, our scheme is not only faster but also more secure. Table
4 gives the comparable key sizes of the ECDSA and RSA/DSA algorithms in terms of the computational effort

for cryptanalysis [28].

Table 4. Comparable key sizes in terms of the computational effort for cryptanalysis [28].

ECDSA (size of the prime field in bits) RSA/DSA (modulus size in bits)
112 512
160 1024
224 2048
256 3072
384 7680
512 15,360

5. Conclusions and future remarks

In this study, we briefly introduced the concept of BDS, and later on, our contribution to the field was presented.
Our proposed BDS scheme has lower complexity (i.e. in terms of computational load) and provides better

security compared to those in [1] and [17].

Our proposed scheme uses ECC (ECDSA), providing all of its advantages over the other PKC algorithms.
It offers smaller key lengths for desired security levels, along with high-speed cryptographic processes, leading to
low-complexity hardware and software requirements [12]. These advantages are indispensable for applications
where resource shortage is of prime importance, especially in mobile platforms. Our proposed scheme can
be used in the applications where not only user anonymity but also processing time is critical under certain
hardware constraints.

According to the results, our proposed scheme outperforms that in [1] by 96% and that in [17] by 66%
in terms of processing time. Thus, our proposed scheme leads to an apparent improvement in BDS systems.
Eventually, this enhancement will drastically reduce the total cost of the commercial systems that are using
BDS.

The application of our scheme to smart cards, e-commerce, and e-voting is left as future work for us to
consider.

Acknowledgments

We would like to give special thanks to our colleagues Dr Murad Khalid, Dr Hasari Çelebi, and Prof Ravi Sankar
for their reviews and valuable comments regarding the publication of this work.

References

[1] D. Chaum, “Blind signatures for untraceable payments”, Advances in Cryptology: Proceedings of CRYPTO ‘82,

pp. 199–203, 1983.

[2] D. Chaum, “Blind signature system”, Advances in Cryptology, p. 153, 1984.

[3] D. Chaum, A. Fiat, M. Naor, “Untraceable electronic cash”, Proceedings in Advances in Cryptology, pp. 319–327,

1988.

955

BÜTÜN and DEMİRER/Turk J Elec Eng & Comp Sci

[4] A. Juels, M. Luby, R. Ostrovsky, “Security of blind digital signatures”, Proceedings of the 17th Annual International

Cryptology Conference on Advances in Cryptology, pp. 150–164, 1997.

[5] D. Pointcheval, J. Stern, “Provably secure blind signature schemes”, Advances in Cryptology – Proceedings of

ASIACRYPT, pp. 252–265, 1996.

[6] Y.C. Lai, M.S. Hwang, “A study on digital blind signature and its applications to electronic voting and electronic

cash”, MSc, Chaoyang University of Technology, 2002.

[7] D. Chaum, “Privacy protected payments: unconditional payer and/or payee untraceability”, In: D. Chaum, I.

Schaumuller-Bichl, Eds., Smart Card 2000, Amsterdam, Elsevier, pp. 69–93, 1989.

[8] N. Ferguson, “Single term off-line coins”, Advances in Cryptology: Workshop on the Theory and Application of

Cryptographic Techniques, pp. 318–328, 1994.

[9] C.I. Fan, C.L. Lei, “A multi-recastable ticket scheme for electronic elections”, Advances in Cryptology, Vol. 1163,

pp. 116–124, 1996.

[10] W.S. Juang, C.L. Lei, “A collision-free secret ballot protocol for computerized general elections”, Computers and

Security, Vol. 15, pp. 339–348, 1996.

[11] W.S. Juang, C.L. Lei, “A secure and practical electronic voting scheme for real world environments”, IEICE

Transactions on Fundamentals of Electronics Communications and Computer Sciences, Vol. E80-A, pp. 64–71,

1997.

[12] A. Lenstra, E. Verhuel, “Selecting cryptographic key sizes”, Journal of Cryptography, Vol. 14, pp. 255–293, 2001.

[13] R.L. Rivest, A. Shamir, L.M. Adleman, Cryptographic Communications System and Method, US Patent 4,405,829,

1983.

[14] D.W. Kravitz, Digital Signature Algorithm (DSA), US Patent 5,231,668, 1993.

[15] D. Johnson, A. Menezes, S. Vanstone, “The elliptic curve digital signature algorithm (ECDSA)”, International

Journal of Information Security, Vol. 1, pp. 36–63, 2001.

[16] İ. Bütün, “Blind digital signature system development and implementation”, MSc, Hacettepe University, Ankara,

Turkey, 2006. Available at http://www.eng.usf.edu/∼ ibutun/masters/ismail butun master thesis published.pdf.

[17] J.L. Camenisch, J.M. Piveteau, M.A. Stadler, “Blind signatures based on the discrete logarithm problem”, Advances

in Cryptology - EUROCRYPT, Vol. 950, pp. 428–432, 1995.

[18] M. Brown, D. Hankerson, J. López, A. Menezes, “Software implementation of the NIST elliptic curves over prime

fields”, Proceedings of the Cryptographer’s Track at RSA Conference, Vol. 2020, pp. 250–265, 2001.

[19] NIST, “Digital Signature Standard”, Federal Information Processing Standards Publication 186, 2000.

[20] Standards for Efficient Cryptography Group, “SEC 1: Elliptic Curve Cryptography”, available at

http://www.secg.org/, accessed October 2011.

[21] D. Eastlake, P. Jones, “US Secure Hash Algorithm 1 (SHA1)”, RFC 3174, Internet Engineering Task Force, 2001.

[22] SoftForum, “PKI and Contents Protection”, available at www.softforum.co.kr, accessed May 2010.

[23] N. Koblitz, A. Menezes, S. Vanstone, “The state of elliptic curve cryptography”, Journal of Designs, Codes and

Cryptography, Vol. 19, pp. 173–193, 2000.

[24] S. Pohlig, M. Hellman, “An improved algorithm for computing logarithms over GF(P) and its cryptographic

significance (Corresp.)”, IEEE Transactions on Information Theory, Vol. 24, pp. 106–110, 1978.

[25] MIRACL Elliptic Curve Library, Shamus Software, available at http://www.shamus.ie/index.php?page=elliptic-

curves, accessed May 2010.

[26] M.J. Wiener, “Performance comparison of public-key cryptosystems”, CryptoBytes, Vol. 4, pp. 1–5, 1998.

[27] A. Menezes, “Elliptic curve cryptosystems”, CryptoBytes, Vol. 1, pp. 1–4, 1995.

[28] W. Stallings, Cryptography and Network Security: Principles and Practice, New Jersey, Prentice Hall, pp. 312–313,

2006.

956

